
THE HETEROGENEOUS SYSTEM ARCHITECTURE

IT’S BEYOND THE GPU

PAUL BLINZER
AMD INC, FELLOW, SYSTEM SOFTWARE

SYSTEM ARCHITECTURE WORKGROUP CHAIR

HSA FOUNDATION

THE HSA VISION

MAKE HETEROGENEOUS PROGRAMMING MUCH EASIER

Single source programming in common high-level languages 1

Enable the programming language of the developer 2

Eliminate data copies3

Common address space 4

Standardized command submission to the processor (GPU, …) 5

Eliminate software layers between application and hardware6

ISA agnostic for CPU, GPU and other accelerators7

Open source software stack 8

High performance

Low power

Extensible to other accelerators on the SoC

END USERS BENEFIT FROM HSA WITH APPLICATIONS

THAT RUN FASTER AND AT LOWER POWER

Always on, visually

aware devices will offer

greater capability in a

lower power budget,

scaling with every

advance in app

processing

Mobile and tablet

devices will use the

CPU, GPU and DSP

working seamlessly

together for content

creation, gaming and

more

HSA architecturally integrates the accelerators in today’s complex SoCs

to be easily and efficiently utilized by application developers

Intelligent cloud

analytics, DNN will be

more efficient, and

make best use of

every server upgrade

Sophisticated ADAS

real-time analytics

will be easier to

develop, adapt to

any platform, and

be more robust

THE PILLARS OF HSA

 To bring accelerators forward as a first class processor within the system

 Unified process address space across all processors (Shared Virtual Memory)

 Processors operating with the application’s pageable system memory

 Memory coherency between CPU and HSA components simplifies “data collaboration”

 Well-defined relaxed consistency memory model suited for many high level languages

 Platform atomics

 Architected “memory-based” signals and event mechanisms between processers

 User mode dispatch/scheduling via AQL (eliminates “drivers” from the dispatch path)

 QoS through pre-emption and context switching*

 Some non-HSA platforms support a few of these platform features

 In combination these features greatly simplify programmability

HSA – AN OPEN PLATFORM

 Open Architecture, membership open to all

 Delivered via royalty free standards

 Royalty Free IP, Specifications and APIs

 ISA agnostic for both CPU and GPU

 Vendors for x86, MIPS, ARM and many GPU architectures

 Membership from all areas of computing

 Hardware companies

 Operating Systems

 Tools and Middleware

 Applications

 Universities

MEMBERS DRIVING HSA
Founders

Promoters

Supporters

Contributors

Academic

OPENCL™ WITH HSA

NOT OPENCL™ VS HSA!

 HSA is an optimized platform architecture, which runs OpenCL™ very well

 It is a complementary standard, not a competitor to OpenCL™

 It is focused on the hardware and system platform runtime definition more than an API itself

 It supports many more languages than C/C++, including managed code languages

 OpenCL™ on HSA benefits from a rich and consistent platform infrastructure

 Pointers shared between CPU and GPU (Shared Virtual Memory), Avoidance of wasteful copies

 Low latency dispatch

 Improved and consistent memory model

 Virtual function calls

 Flexible control flow

 Exception generation and handling

 Device and platform atomics

TERMS

 Host (CPU)

 An agent that supports a native CPU instruction set

 Can dispatch commands to kernel agents

 Can construct Architected Query Language (AQL) packets

 Can also act as a kernel agent

 Kernel Agent (GPU, DSP, ISP, etc.)

 An agent that supports HSAIL

 Has an AQL packet processor

 Can dispatch commands to any kernel agent

 Including itself

 Other Agent

 An agent that participates in the HSA memory model

HSA MEMORY MODEL

 Defines data visibility, ordering between all

threads in the HSA System

 Designed to be compatible with C++11, Java,

OpenCL and .NET Memory Models

 Relaxed consistency memory model for parallel

compute performance

 HRF based definition, scopes, relaxed atomics

 Plan: formal definition, automated verification

 Visibility controlled by:

 Load.Acquire

 Store.Release

 Fences

HSA COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

Accelerator

Hardware

(GPU)

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

HW view:

 HW / microcode controlled

 HW scheduling

 Architected Queuing Language

(AQL)

 HW-managed protection

SW view:

 User-mode dispatches to HW

 No Kernel Driver overhead

 Low dispatch times

 CPU & GPU dispatch APIs

© Copyright 2012-2016 HSA Foundation. All Rights Reserved.
11

HSA QUEUING MODEL

User mode queuing
 Low latency dispatch

 Application dispatches directly

 No OS or driver required

Architected Queuing Layer (AQL)
 Single compute dispatch path for all hardware

 No driver translation, direct to hardware

 Standard across vendors!

 Guaranteed backward compatibility

Allows for dispatch to queue from any agent
 CPU or GPU or DSP or FPGA, etc.

Agent self enqueue enables
 Recursion, Tree traversal, Wavefront reforming

Requires coherency and

shared virtual memory

Application / Runtime

COMMAND AND DISPATCH CPU <-> DEVICE

B A F EDC G

CPU2CPU1 Device

THE AQL QUEUE DEFINITION

 AQL queue structure

HSA SECURITY AND EXECUTION MODEL

 HSA components operate in the same security infrastructure as the host CPU

 User and privileged memory distinction

 Hardware enforced process space isolation

 Page attributes (Read, write, execute) protections enforced by HW, apply as defined by system

 Internally, the platform partitions functionality by privilege level

 User mode queues can only run AQL packets within the defined process context

 HSA defines Quality of Service requirements

 Requires support for mechanisms to schedule both HSA and non-HSA workloads for devices that
support both task types with appropriate priority, latency, throughput and scheduling constraints.

 Context Switch

 Preempt

 Terminate and Context Reset

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

HSA - EVOLUTION OF THE SOFTWARE STACK

HSA INTERMEDIATE LAYER - HSAIL

 HSAIL is a virtual ISA for parallel programs

 Finalized to ISA by a JIT compiler or “Finalizer”

 ISA independent by design for CPU & GPU

 Explicitly parallel

 Designed for data parallel programming

 Support for exceptions, virtual functions,

and other high level language features

 Agent Dispatch to call OS and system runtime

 GPU/accelerator code can call directly to OS and

other system runtime services, I/O, printf, etc.!

 Debugging, Profiling support requirements

16

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.

Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

0

50

100

150

200

250

300

350

L
O

C

Copy-back Algorithm Launch Copy Compile Init Performance

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

P
e

rfo
rm

a
n

c
e

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0Copy-

back

Algorithm

Launch

Copy

Compile

Init.

Copy-back

Algorithm

Launch

Copy

Compile

Copy-back

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

(Exemplary ISV “Hessian” Kernel)

LINES-OF-CODE AND PERFORMANCE COMPARISONS

HSA SPECIFICATIONS

 HSA System Architecture Specification

 Version 1.0 defines discovery, memory model, queue management, atomics, etc

 HSA Programmers Reference Specification

 Version 1.0 defines the HSAIL language and object format

 HSA Runtime Software Specification

 Version 1.0 defines the APIs through which an HSA application uses the platform

 All released specifications can be found at the HSA Foundation web site:

 www.hsafoundation.com/standards

http://www.hsafoundation.com/standards

HSA OPEN SOURCE SOFTWARE

 HSA features a full open source Linux execution and compilation stack

 Allows a single shared implementation for many components

 Enables university research and collaboration in all areas

 Because it’s the right thing to do

 Many open source applications & frameworks, ported to HSA more in the works

 Native Languages: Kalmar C++17, HCC, LLVM, GCC, CLOC/SNACK, Python, Java, …

 API’s, Frameworks: POCL, Docker, OpenMP, OKRA, HIP, …

 Research: Multi2sim, HSAEmu, gem5, ViennaCL, …

 And many applications using OCL 2.0 or HSA stack

 Github & Bitbucket repositories have much, much more…

https://github.com/HSAFoundation/
https://bitbucket.org/

LOOKING BEYOND THE DATA PARALLEL

COMPUTE APPLICATION

 The initial 1.0 release of the HSA specifications focuses on data parallel compute language and apps

 Focus is on integrating GPUs into the general high-level language software infrastructure

 But the next generations of the specifications will apply to other domains

 With their domain-specific HW processor language focus

 Updates to 1.1 specification are very close to release

 By design the HSA infrastructure is quite easy to extend

 Initial focus is on data parallel compute tasks

 But other areas of Domain Specific Processors are under consideration

 Architected Topology infrastructure allows to reliably identify and address domain
specific accelerator capabilities

 By design the HSA infrastructure is easy to virtualize

 Programming model does leverage few, simple hardware & platform paradigms
(queues, signals, memory) for its operation

 Future spec work may put additional requirements to cover such environments

CPU GPU

Audio

Processor

Image

Processor

S
h

a
re

d
 M

e
m

o
ry

 a
n
d

 C
o

h
e

re
n

c
y
 F

a
b

ri
c

Video

Decode

Encode

DSP

Security

Processor

Fixed

Function

Accelerator

WHAT DO I NEED TO START PLAYING?

 A10-8800 (Carrizo) system

 Carrizo system recommended, many different vendors (HP, Dell, Toshiba, Lenovo, …) available

 No discrete GPU in the system (for now, using default pre-built image)

 Other HSA members will release HSA compliant hardware within the year

 Ubuntu 14.04 64bit LTS or Fedora 21

 OpenSuSE and Redhat work too, but not officially supported (require rebuild of image)

 https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD

 https://github.com/HSAFoundation/ has a collection of compilers, tools, debuggers, …

 AMD’s “Boltzmann” initiative will support HSA subset for HPC on discrete GPU

 Simplifies porting from proprietary APIs via HIP, HSA compatible programming model (ROCR)

 Go to http://gpuopen.com for more

https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://github.com/HSAFoundation/
http://www.amd.com/en-us/press-releases/Pages/boltzmann-initiative-2015nov16.aspx
http://gpuopen.com/

© Copyright 2012-2016 HSA Foundation. All Rights Reserved.
22

GEN1: FIR & AES

FIR is a memory-intensive streaming workload

AES is a compute-intensive streaming workload

CL12 – cl_mem buffer
 Copy to/from the device

CL20 – SVM buffer – Coarse Grain Sync
 Copy to/from SVM

 Data copy cannot be avoided, since the space for SVM is limited

HSA – Unified Memory Space – Fine Grained Sync
 Regular pointer

 No explicit copy

Results
 HSA compute abstraction

 NO performance penalty

 Measured on Kaveri (A pre-HSA 1.0 device)

 AMD Carrizo (HSA 1.0 compliant) improves performance for coherent transactions

Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, David

Kaeli,A Comprehensive Performance Analysis of HSA and OpenCL 2.0,

Proceedings of the 2016 International Symposium on Program

Analysis and System Software, April 2016, to appear.

BLACK-SCHOLES

C++ on HSA

 Matches or outperforms OpenCL

Course Grained SVM

 Matches OpenCL buffers for bandwidth

 More predictable performance

Fine Grained SVM

 Faster kernel dispatch

 Larger allocations

 Shared data structure

Source: Ralph Potter – Codeplay. Presentation made to SG14 C++ Workgroup

IN SUMMARY…

 HSA is not about a specific API, feature or runtime

 It is about a paradigm to efficiently access the various heterogeneous components in a system by software

 It allows application programmers to use the languages of their choice to efficiently implement their code

 HSA is not about a specific hardware or vendor or Operating System

 It defines a few fundamental requirements and concepts as building blocks software at all levels can depend on

 HW vendors can efficiently expose their compute acceleration features to software in an architected way

 OS, runtimes and application frameworks can build efficient data and task parallel runtimes leveraging these

 Application software can more easily use the right tool for the job through high level language support

 HSA is an open and flexible concept

 Collaborative participation through the HSA Foundation is encouraged for companies and academia

 The first set of standards by the HSA Foundation is released, first products are available and a number of language and
application frameworks are available

 This is a good time to engage, lots of research opportunities

 HSA Foundation sponsors research on heterogeneous platform technologies

ACKNOWLEDGEMENTS

 With thanks to Dr. John Glossner, Ben Sander, Greg Stoner and others in the HSA Foundation

for some materials and feedback

Trademark Attribution

HSA Foundation, the HSA Foundation logo and combinations thereof are trademarks of HSA Foundation, Inc. in the United States and/or other

jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

ANY QUESTIONS?
 Of course there are, so go ahead

“CARRIZO” IS AMD’S SECOND APU PRODUCT WITH HSA FEATURES

